Fresh Gas Flow Affects Tidal Volume during Pressure Control Ventilation

Mohammad S, Gravenstein N, Gonsalves D, Lampotang S

Department of Anesthesiology, Center for Safety, Simulation & Advanced Learning Technologies, Clinical & Translational Science Institute Simulation Core, University of Florida, College of Medicine, Gainesville, FL

Introduction

We observed that higher fresh gas flow (FGF) appears to decrease exhaled tidal volume (VT) during pressure control ventilation (PCV). A literature search produced no description of this effect whereby unintended VT changes can cause hypoventilation or barotrauma in infants.1 We designed and performed bench experiments to investigate our observation.

Methods

To model an infant’s lungs, one lung of a mechanical lung model (Dual Adult TTL 1600, Michigan Instruments, Inc., Grand rapids, MI) was set at a compliance of 0.0068 L/cm H2O. An Rp50 resistor (27.2 cm H2O/L/s @ 15 L/min) simulated bronchial resistance.2 3 The simulated lung was connected to a pediatric breathing circuit via a 3.5-mm cuffed endotracheal tube. A ventilator (Model 7900) with PCV capability (Aestiva, GE Healthcare, Madison, WI) and a flow monitor (NICO, Respironics, Murraysville, PA) measured exhaled VT, peak inspiratory flow, positive end-expiratory pressure (PEEP), and peak inspiratory pressure. In PCV mode, exhaled VT at FGF rates of 1, 6, 10, and 15 L/min reported on the 7900 ventilator display was manually recorded. The initial values for set inspired pressure (10 cm H2O), I:E ratio (1:2), PEEP (0 cm H2O), and respiratory rate (20 breaths/min) were later changed for further data collection. Data were analyzed by a non-parametric ANOVA with separate pairwise Wilcoxon signed rank tests used for post hoc analysis. To correct for multiple comparisons, p=0.001 was considered significant.

Results

Higher FGF rates in PCV mode significantly decreased exhaled VT (p<0.001). From post hoc tests for each setting, exhaled VT overall decreased as FGF rate increased (p=0.0001 across all settings). Across the multiple ventilatory settings, when comparing FGF rates of 1 to 6, 10 and 15 L/min, exhaled VT decreased by up to 27%, 68%, and 80%, respectively.

Conclusions

We found that FGF has a significant effect on VT during PCV with a bellows ventilator, suggesting caution when changing FGF during PCV in infants. Our hypothesis for this heretofore undescribed interaction is that at higher FGF rates, an inadvertent “PEEP” is developed by the flow resistance of the ventilator relief valve that is not recognized or compensated for by the ventilator. At a higher unintended baseline “PEEP,” less change in pressure is needed to reach the set inspired pressure, resulting in lower VT delivery at higher FGF rates. An option is to use PCV with volume guarantee (PCV-VG), if available. This underappreciated interaction seems to apply to actual data, data collection with IRB approval in patients is needed to further evaluate the FGF-VT interaction during PCV with a bellows ventilator.

References

1. Anesth Analg 2008;106:1392-1400
2. Pediatrics 1964;34:4-525-532

Samsun (Sem) Lampotang, PhD slampotang@anest.ufl.edu