Pulse Oximetry, An Accurate Monitor for Detection of Hypoventilation

John B. Downs, MD, Nikolaus Gravenstein, MD, David E. Lizdas, BSME, Krista Haines, Isaac Luria, MS, Samsun Lampotang, PhD

Department of Anesthesiology, University of Florida, Gainesville, Florida
Center for Simulation, Safety, Advanced Learning & Technology, University of Florida, Gainesville, Florida
Lake Erie College of Osteopathic Medicine, Bradenton, Florida

This research was made possible by a generous donation from James and Joh-Nana Lybass

BACKGROUND

- Arterial hypoxemia is considered to be significant when SpO2 is <90%
- Only three of six classical physiologic causes of arterial hypoxemia are clinically relevant
 - Low V/Q
 - Shunt
 - Hypoventilation (see AGE)
- None explain the rapid desaturation observed with acute hypoventilation and airway obstruction, the most common hypoxic events!

HYPOTHESES

- The pulse oximeter is a sensitive monitor for acute hypoventilation
- SpO2 <90% is tolerable (for the patient)
- Supplemental O2 will not prevent hypoventilation induced hypoxemia
- Supplemental O2 is minimally effective for increasing O2 delivery at the cellular level
- The rate of O2 desaturation, once initiated, is directly proportional to FIO2

DISCUSSION OF FALLACIES

- Capillary and tissue PO2 levels are dependent variables; saturation is the independent variable for presentation of the oxyhemoglobin dissociation curve
- Dissolved O2 is of minimal significance in determining O2 delivery; therefore, so is supplemental O2
- The sensitivity of pulse oximetry as a monitor of ventilation is inversely proportional to FIO2
- Used appropriately, pulse oximetry is a sensitive monitor for detection of acute hypoventilation and/or airway obstruction

SUMMARY

- The O2 Hgb dissociation curve represents a "slippery slope" (It’s flawed)
- Supplemental O2 is appropriate, innocuous and protective
- Pulse oximetry prevents morbidity and mortality
- The respiratory gas exchange quotient R is a constant

REFERENCES