Hypoxic Inspired Gas Concentrations Are Readily Created by a Fresh Gas Flow of 2 L/min Air

Drew B. Gonsalves, BS¹; AJ Tucker, BS²; Samsun Lampotang, PhD¹; Nikolaus Gravenstein, MD¹

¹Department of Anesthesiology, University of Florida College of Medicine, and Center for Safety, Simulation & Advanced Learning Technologies, ²University of Florida, Gainesville, Florida

Introduction
Consistent with patient needs, a fraction of inspired oxygen (FiO₂) ≤ 0.3 or air (21% O₂) should be used in high surgical airway fire risk cases. To conserve volatile anesthetics, a 2 L/min or less fresh gas flow (FGF) [1] is common. Modern anesthesia machines have design features that prevent dialing a hypoxic (<21% O₂) mixture. We evaluated if a FGF of 2 L/min air is sufficient to prevent development of hypoxic inspired gas concentrations.

Methods
A human patient simulator (HPS™; CAE, Sarasota, FL) set to consume 225 mL/min or 400 mL/min oxygen [2] was ventilated by an anesthesia machine (Aestiva S/5, GE Healthcare, Madison, WI) at 2 L/min air FGF, RR 10 bpm, and VT 500 mL. Inspired and expired O₂ concentrations were recorded at the Y-piece from a Capnomac Ultima UltI.09.EN, Datex (GE Healthcare) every 10 seconds for 5 minutes and repeated ten times. Data were analyzed to determine if and when a hypoxic inspired gas mixture occurred.

Results
A FGF of 2 L/min air is insufficient to prevent development of a hypoxic gas mixture for a simulated adult patient. The average time to an FiO₂ of 0.20 at an O₂ consumption rate of 225 mL/min was 122 ± 13.9 sec and, at 400 mL/min, was 84 ± 8.4 sec. A hypoxic gas mixture of 20% O₂ results sooner with a higher oxygen consumption (Figure 1).

Discussion
When FGF is lower than minute ventilation (MV), some rebreathing inevitably occurs. An unintended consequence at lower FGFs is partial rebreathing of exhaled oxygen which is less than 21% O₂ when breathing air and leads to the development of a hypoxic FiO₂.

Conclusion
Air has been suggested as a FGF option for high surgical fire risk cases. To conserve expensive inhaled agents, a ≤ 2 L/min FGF is commonly used. Because 2 L/min air FGF evolves into a hypoxic (<21%) inspired gas mixture in a simulated adult, if air is to be used, we recommend a FGF ≥ MV, to prevent inadvertent development of a hypoxic FiO₂.

References

Acknowledgements
The protocol in the current research is based on experimental data and an experimental protocol previously developed by Thomas Cowan, MS, Gregory Goldenherch, MD and Samsun Lampotang, PhD.